Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
JiYeon Yun 3 Articles
Synthesis and Characterization of Brilliant Yellow Color Pigments using α-FeOOH Nanorods
JiYeon Yun, Ri Yu, YooJin Kim
J Powder Mater. 2016;23(6):453-457.   Published online December 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.6.453
  • 46 View
  • 0 Download
AbstractAbstract PDF

In this work, we synthesize brilliant yellow color α-FeOOH by controlling the rod length and core-shell structure. The characteristics of α-FeOOH nanorods are controlled by the reaction conditions. In particular, the length of the α-FeOOH rods depends on the concentration of the raw materials, such as the alkali solution. The length of the nanorods is adjusted from 68 nm to 1435 nm. Their yellowness gradually increases, with the highest b* value of 57 based on the International Commission on Illumination (CIE) Lab system, by controlling the nanorod length. A high quality yellow color is obtained after formation of a silica coating on the α-FeOOH structure. The morphology and the coloration of the nal products are investigated in detail by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and the CIE Lab color parameter measurements.

Coloration Study of Red/Yellow β-FeOOH Nanorod using NH4OH Solution
Ri Yu, IllJoo Kim, JiYeon Yun, Eun-Young Choi, Jae-Hwan Pee, YooJin Kim
J Powder Mater. 2016;23(5):343-347.   Published online October 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.5.343
  • 18 View
  • 1 Download
AbstractAbstract PDF

Fe-based pigments have attracted much interest owing to their eco-friendliness. In particular, the color of nanosized pigments can be tuned by controlling their size and morphology. This study reports on the effect of length on the coloration of β-FeOOH pigments prepared using an NH4OH solution. First, rod-type β-FeOOH is prepared by the hydrolysis of FeCl3·6H2O and NH4OH. When the amount of NH4OH is increased, the length of the rods decreases. Thus, the length of the nanorods can be adjusted from 10 nm to 300 nm. The color of β-FeOOH changes from orangered to yellow depending on the length of β-FeOOH. The color and phase structure of β-FeOOH is characterized by UVvis spectroscopy, CIE Lab color parameter measurements, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

Coloration and Chemical Stability of SiO2 and SnO2 Coated Blue CoAl2O4 Pigment
JiYeon Yun, Ri Yu, Jae-Hwan Pee, YooJin Kim
J Powder Mater. 2014;21(5):377-381.   Published online October 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.5.377
  • 17 View
  • 0 Download
AbstractAbstract PDF

This work describes the coloration, chemical stability of SiO2 and SnO2-coated blue CoAl2O4 pigment. The CoAl2O4, raw materials, were synthesized by a co-precipitation method and coated with silica (SiO2) and tin oxide (SnO2) using sol-gel method, respectively. To study phase and coloration of CoAl2O4, we prepared nano sized CoAl2O4 pigments which were coated SiO2 and SnO2 using tetraethylorthosilicate, Na2SiO3 and Na2SnO3 as a coating material. To determine the stability of the coated samples and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Blue CoAl2O4 solutions were tuned yellow color under all acidic/basic conditions. On the other hand, the chemical stability of SiO2 and SnO2-coated CoAl2O4 solution were improved when all samples pH values, respectively. Phase stability under acidic/basic condition of the core-shell type CoAl2O4 powders were characterized by transmission electron microscope, X-ray diffraction, CIE L*a*b* color parameter measurements.


Journal of Powder Materials : Journal of Powder Materials